Abstract

In animals, behavioural personality traits have been well-documented in a wide array of species. However, these traits, different between individuals, are not completely stable in individuals. They show behavioural plasticity like many other phenotypic traits. This plasticity is able to overcome some weak aspects of personality trait behavioural strategy. In the present study, we examined the relationship between motor personality traits and behavioural plasticity in the common vole (Microtus arvalis) using a PhenoTyper (PT) box (Noldus). During a three-day test, four behavioural motor activity parameters were monitored in 47 voles: distance moved, (loco)motion duration, motion change frequency, sprint duration. Consistency repeatability (RC) of the parameters from the PT test was very high, with all values ≥ 0.91. To select the best linear mixed-effect models (LMMs), several predictors (test day, sex, body weight) were tested. Only test day had a significant effect on the dependent variables and other predictors did not improve the LMMs. Further, we found significant effects of random intercepts (motor personality traits) and slopes (behavioural plasticity), as well as significant negative correlations between them for all behavioural parameters. Our results indicate that motor personality traits were connected with behavioural plasticity. Moreover, we revealed a significant positive correlation between the random slopes of (loco)motion duration and motion change frequency. This relationship could indicate some central plasticity of motor personality traits. In conclusion, negative correlations between the motor personality traits and the behavioural plasticity demonstrate expression of convergent tendency from both opposite trait values. This corresponds with different ideas on ability to compensate personality effects or to prepare for potential future conditions. In the laboratory, plasticity of personality traits take place whenever an animal is placed e. g. in a breeding box for the first time or is left for a long time in an experimental apparatus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.