Abstract

In this study, we investigate the mechanical performance of woven glass fiber reinforced polymer composite laminates subjected to quasi-static and cyclic loading at room temperatures using the unnotched and open hole specimens. The mechanical behaviour and damage in composite laminates are greatly affected by the existence of notches with different parameters such as the size of the holes, number of layers and stacking sequences. The objective of this study is to investigate and evaluate the mechanical behavior of composite lamination structures using unnotched and notched specimens by experimentally and numerically. The materials selected for the studies were chopped strand mat (CSM)/woven roving fabric (WR) as the reinforcement and epoxy resin as the matrix. The hand lay-out technique was used to fabricate these composites. Fractured surfaces were comprehensively examined in a optical microscope and scanning electron microscope (SEM) to determine the microscopic fracture mode and to characterise the microscopic mechanism governing fracture. A numerical procedure based on the finite element method was then applied to evaluate the overall fatigue behaviour of the unnotched and open hole polymer laminate composites using the experimentally applied load. The predicted results based on the FEM analysis were found to be in reasonable agreement with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.