Abstract

Movement imagery (MI) is a cognitive process wherein an individual simulates themselves performing a movement in the absence of physical movement. The current paper reports an examination of the relationship between behavioural indexes of MI ability and the magnitude of corticospinal adaptation following MI training. Behavioural indexes of MI ability included data from a questionnaire (MIQ-3), a mental chronometry task, and a hand laterality judgment task. For the measure of corticospinal adaptation, single-pulse transcranial magnetic stimulation (TMS) was administered to elicit thumb movements to determine the representation of thumb movements before and after MI training. MI training involved participants imagining themselves moving their thumb in the opposite direction to the dominant direction of the TMS-evoked movements prior to training. Pre/post-training changes in the direction and velocity of TMS-evoked thumb movements indicated the magnitude of adaptation following MI training. The two main findings were: 1) a positive relationship was found between the MIQ-3 and the pre/post-training changes in the direction of TMS-evoked thumb movements; and 2) a negative relationship between the mental chronometry measure and both measures of corticospinal adaptation following MI training. These results indicate that both ease of imagery and timing of imagery could predict the magnitude of neuroplastic adaptation following MI training. Thus, both these measures may be considered when assessing imagery ability and determining who might benefit from MI interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call