Abstract

BackgroundCerebral malaria is one of the most severe complications of Plasmodium falciparum infection and occurs mostly in young African children. This syndrome results from a combination of high levels of parasitaemia and inflammation. Although parasite sequestration in the brain is a feature of the human syndrome, sequestering strains do not uniformly cause severe malaria, suggesting interplay with other factors. Host genetic factors such as mutations in the promoters of the cytokines IL-10 and TNF are also clearly linked to severe disease. Plasmodium chabaudi, a rodent malaria parasite, leads to mild illness in wildtype animals. However, IL-10−/− mice respond to parasite with increased levels of pro-inflammatory cytokines IFN-γ and TNF, leading to lethal disease in the absence of sequestration in the brain. These mice also exhibit cerebral symptoms including gross cerebral oedema and haemorrhage, allowing study of these critical features of disease without the influence of sequestration.MethodsThe neurological consequences of P. chabaudi infection were investigated by performing a general behavioural screen (SHIRPA). The immune cell populations found in the brain during infection were also analysed using flow cytometry and confocal microscopy.ResultsIL-10−/− mice suffer significant declines in behavioural and physical capacities during infection compared to wildtype. In addition, grip strength and pain sensitivity were affected, suggestive of neurological involvement. Several immune cell populations were identified in the perfused brain on day 7 post-infection, suggesting that they are tightly adherent to the vascular endothelium, or potentially located within the brain parenchyma. There was an increase in both inflammatory monocyte and resident macrophage (CD11bhi, CD45+, MHCII+, Ly6C+/−) numbers in IL-10−/− compared to wildtype animals. In addition, the activation state of all monocytes and microglia (CD11bint, CD45−, MHC-II+) were increased. T cells making IFN-γ were also identified in the brain, but were localized within the vasculature, and not the parenchyma.ConclusionsThese studies demonstrate exacerbated neuroinflammation concurrent with development of behavioural symptoms in P. chabaudi infection of IL-10−/− animals.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1477-1) contains supplementary material, which is available to authorized users.

Highlights

  • Cerebral malaria is one of the most severe complications of Plasmodium falciparum infection and occurs mostly in young African children

  • In order to determine the behavioural phenotype of IL-10−/− mice infected with P. chabaudi, IL-10−/− and WT mice were infected with 105 P. chabaudi-infected red blood cells, and a comprehensive animal health and behaviour assessment was performed daily

  • Infection of IL-10−/− mice with P. chabaudi induces a fatal malarial disease characterized by increased mortality, severe neurological and behavioural deficits, elevated numbers of IFN-γ+ T cells and macrophages adherent within the brain vasculature, and activated microglia, suggestive of elevated neuroinflammation

Read more

Summary

Introduction

Cerebral malaria is one of the most severe complications of Plasmodium falciparum infection and occurs mostly in young African children This syndrome results from a combination of high levels of parasitaemia and inflammation. Parasite sequestration in the brain is a feature of the human syndrome, sequestering strains do not uniformly cause severe malaria, suggesting interplay with other factors. Host genetic factors such as mutations in the promoters of the cytokines IL-10 and TNF are clearly linked to severe disease. IL-10−/− mice respond to parasite with increased levels of pro-inflammatory cytokines IFN-γ and TNF, leading to lethal disease in the absence of sequestration in the brain. It is possible that inflammation is the primary precipitating cause of P. falciparum sequestration in the human brain and other organs

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call