Abstract

Increased psychophysiological resistance to chronic stress has been related to increased 5-HT release in the dorsal hippocampus. This study investigated the changes in 5-HT release and turnover in the hippocampus evoked by acute and repeated exposure to an inescapable stressor, an elevated open platform, and compared them to the changes evoked in the frontal cortex. Repeated exposure to this stressor results in habituation of the plasma corticosterone response to the test, with full habituation being observed after 20 trials. Repeated exposure to the stressor for 5 or 10 occasions increased 5-HT turnover in the hippocampus. By contrast, 5-HT turnover in frontal cortex was increased by acute exposure to the stressor. Microdialysis studies showed that acute stress increased 5-HT overflow in prefrontal cortex but not dorsal hippocampus whereas repeated daily (10 days) exposure to the stressor increased basal extracellular 5-HT in the dorsal hippocampus, but not the prefrontal cortex. Prior exposure to the stressor on up to 10 occasions enhanced the plasma corticosterone response to a challenge in an elevated plus-maze performed 24 h later whereas repeated, but not acute, exposure to the stressor, elicited anxiolytic-like behavioural responses in this test. It is concluded that acute exposure to this form of inescapable stress selectively stimulates the 5-HT projections to the frontal cortex; repeated stress elicits a sustained increase in 5-HT release and turnover in the hippocampus. The data are consistent with the hypothesis that increased 5-HT release in the hippocampus may be implicated in the mechanisms underlying habituation to inescapable stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.