Abstract
This article investigates the use of externally bonded Fibre Reinforced Polymer (FRP) jackets to develop a novel high-strength, highly-deformable FRP Confined Rubberised Concrete (CRuC). Sixty rubberised concrete (RuC) cylinders were tested in axial compression. The cylinders were produced using recycled tyre rubber to replace i) 0–100% fine or coarse aggregate volume or ii) a replacement of 40% or 60% of the total aggregate volume. Six cylinders of the latter mix were then confined with either two or three layers of Aramid FRP sheets. The results indicate that the use of high rubber contents in concrete lead to premature microcracking and lateral expansion, the latter of which can be used to activate the FRP confinement earlier and achieve higher confinement effectiveness. The CRuC cylinders reached compressive strengths of up to 75MPa and unprecedented ultimate axial strains up to 5%, i.e. about fourteen times larger than those of normal concrete (0.35%). Such novel high-strength, highly-deformable CRuC is of great value to engineers and can be used for structural applications where large deformability is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.