Abstract

A systematic analysis of the winter North Atlantic eddy-driven jet stream latitude and wind speed from 52 model integrations, taken from the coupled model intercomparison project phase 3, is carried out and compared to results obtained from the ERA-40 reanalyses. We consider here a control simulation, twentieth century simulation, and two time periods (2046–2065 and 2081–2100) from a twenty-first century, high-emission A2 forced simulation. The jet wind speed seasonality is found to be similar between the twentieth century simulations and the ERA-40 reanalyses and also between the control and forced simulations although nearly half of the models overestimate the amplitude of the seasonal cycle. A systematic equatorward bias of the models jet latitude seasonality, by up to 7°, is observed, and models additionally overestimate the seasonal cycle of jet latitude about the mean, with the majority of the models showing equatorward and poleward biases during the cold and warm seasons respectively. A main finding of this work is that no GCM under any forcing scenario considered here is able to simulate the trimodal behaviour of the observed jet latitude distribution. The models suffer from serious problems in the structure of jet variability, rather than just quantitiative errors in the statistical moments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.