Abstract

AbstractThe durability of reinforced concrete (RC) members reduce significantly under aggressive environmental conditions due to the corrosion of steel reinforcement. Also, corrosion of steel reinforcement in concrete members can drastically reduce their load-carrying capacity. The use of fibre-reinforced polymer (FRP) bars is an attractive alternative for steel reinforcement in RC members. However, their brittle failure nature due to the linear elastic stress-strain characteristics is a significant concern. The addition of discrete fibres in FRP reinforced RC members can improve the post-cracking behaviour and provide pseudo-ductility. This study aims to understand the behaviour of macro-synthetic poly-olefin (PO) fibre-reinforced RC columns with glass FRP (GFRP) rebar as internal reinforcement under pure compression. Eight RC columns of cross-section dimensions 305 mm × 305 mm were cast with GFRP rebars and different fibre dosages. The test matrix includes (i) control specimen with no fibres (ii) GFRP RC columns with 0.35% PO fibres (iii) GFRP RC columns with 0.70% PO fibres and (iv) GFRP RC columns with 1.0% PO fibres. Experimental results revealed that the macro synthetic fibre addition to FRP GFRP RC columns improves peak load carrying capacity under pure compression. Also, fibre addition improved the post-peak behaviour without undergoing a sudden drop in the load resistance. Sudden crushing of concrete in compression was prevented due to the presence of fibres which provided pseudo-ductility.KeywordsShort columnsAxial compressionGFRP reinforcementMacro-synthetic fibres

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.