Abstract

Abstract Molar conductances of a large number of copper(I) and cobalt(III) complexes, behaving as strong 1:1 electrolytes, have been measured in acetonitrile (AN) and n-butyronitrile (n-BTN) at 298.15K. The conductance data have been analyzed by the Shedlovsky method to evaluate Λ0 and K A values of these electrolytes. Limiting ion conductances (λ i 0) for various ions in AN have been calculated by using transference number data. In n-BTN, where no transference number data is available, such values have been calculated by an indirect method using Bu4NBPh4 as a reference electrolyte. The actual ionic radii (ri ) for various ions in solution have been calculated using a modified form of Stokes’ law. The ionic radii (ri ) for various complex ions have been compared with the ionic radii of two reference ions, Bu4N+ and Ph4B−, which are not solvated in dipolar aprotic solvents, to throw light on the solvation behaviour of these complex ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.