Abstract

PurposeThe purpose of this paper is to present analysis of short-circuit transients in a single-phase self-excited induction generator (SP-SEIG) for different capacitor topologies.Design/methodology/approachThe paper presents field analysis of the short-circuit problem in the SP-SEIG on the base of two-dimensional field-circuit model of the generator.FindingsThe carried-out field computations of the tested SP-SEIG show that the self-excited induction generator is intrinsically protected from the results of sudden short-circuit, as output voltage and current drop rapidly to zero. Short-circuit is a problem when a series capacitor is used to improve output voltage regulation. Experimental results show that re-excitation of the generator is possible after the short-circuit is removed.Originality/valueThe originality of the paper is the presented analysis of short-circuit transients at terminals of SP-SEIG. A finite elements method-based field circuit model was used. The simulation results were validated by the measurements conducted on a laboratory test setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call