Abstract
An experimental program for identifying the causes of failures in structural walls under earthquake loading and investigating potential rehabilitation schemes was undertaken. Large-scale models of the plastic hinge region of the walls were tested. An innovative test setup that provides the possibility of controlling the ratio of the shear force to both bending moment and axial load was constructed. A control wall was tested and failed prematurely in shear reproducing the failure observed in the field. Two different rehabilitation schemes to improve the behaviour of the wall using biaxial fibre reinforced polymer (FRP) sheets were designed to prevent the shear failure. To improve the ductility, the end column elements of the walls were confined using anchored FRP. The two schemes were tested and proved to be effective in increasing shear strength, ductility, and energy dissipation capacity of the walls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.