Abstract
AbstractSurface reactions of radicals play important roles in the formation of complex molecules on interstellar dust grains. Under interstellar conditions, because the coverage of adsorbates on dust is significantly low, surface reactions are often limited by precedent processes, namely, the adsorption and diffusion of reactants. Therefore, to appropriately incorporate dust surface reactions into chemical models, information on the adsorption and diffusion of radicals is crucial. However, it is not easy to follow the behaviour of radicals on surfaces by conventional experimental methods. To monitor radicals on interstellar dust analogues, we have recently succeeded in applying a combination of photostimulated desorption and resonance-enhanced multiphoton ionization methods. In this paper, we briefly review our recent experiments for clarifying radical behaviour on water ice, pure solid CO and diamond-like carbon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.