Abstract

The separation of high-molecular compounds is very difficult, if possible at all, under isocratic conditions. For this gradient elution is needed. The theory of gradient elution for small molecules is well established; however, its applications to reversed-phase gradient separations of biopolymers are not straightforward because of specific problems, such as slow diffusion, limited accessibility of the stationary phase for larger molecules, or possible sample conformation changes during the elution. We used high performance liquid chromatography to investigate the reversed-phase chromatographic behaviour of 14 proteins. The first step was the determination of the experimental data, and then these data were used to predict gradient retention times. A water-organic solvent-trifluoroacetic acid system was used to examine the influence of experimental parameters. The chromatographic results from four C18-chain-length supports were comparable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.