Abstract

The addition of alloying elements in low alloyed PM steels in the form of a master alloy gives the advantage of introducing oxidation sensitive but less expensive elements and also allows manipulation in composition adjustment to achieve desired properties. In this work, interrupted sintering trials of the Fe–2MA–0.5C (%) (MA = Cu based master alloy) are performed. The behaviour of the liquid forming master alloy, for instance in terms of liquid phase formation, alloying element redistribution and effect on the dimensional changes, is investigated. The results show that master alloy particles melt over a range of temperature, which is also supported by the thermodynamic calculations. The low swelling in the master alloy system, compared to a reference system of Fe–2Cu–0.5C, is attributed to the progressive melting of the master alloy. The mean diffusion distance of Cu in Fe at the interparticle boundaries is 5.8 μm after 34 min of isothermal holding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.