Abstract

Vacuum degassing processes are now an integral part of secondary steelmaking operations and besides the more obvious benefits of steel chemistry control to precise specifications, they also reduce the number of non-metallic inclusions. Care has to be taken, however, that the change in steel composition through loss of C, O, Mn, etc. does not result in a deleterious change in the composition of the remaining inclusions. Attempts in the past to determine the effect of vacuum on inclusion compositions have been through the use of thermodynamic models, following the inclusion engineering approach. The calculated inclusion compositions do not, however, compare well with the inclusions as analysed in samples taken from the liquid steel after the degassing operation. Clearly, it is important to take into account time dependent effects during degassing and this has been achieved by the development of a combined fluid flow-thermodynamic model. Using the computational fluid dynamics model, CFX, to establish the temperature, flow and species contours in a two-dimensional steel ladle under the influence of natural convection, the results are transferred as start conditions in a three-dimensional RH degasser model. A body force is then applied to simulate the argon bubbles that are injected into the up-leg of the degasser and changes in flow, temperature and species concentrations are calculated. Allowing for additions made during the process, the composition of the top slag and any local inclusions within the steel is predicted. The influence on top slag and inclusion chemistry of any glaze on the snorkels of the degasser is also taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.