Abstract

The aim of this work was to evaluate in vitro the effect of autologous plasma lipoprotein subfractions on erythrocyte tendency to aggregate. Aliquots of human blood samples were enriched or not (control) with their own HDL-C, LDL-C, or VLDL-C fractions obtained from the same batch by density gradient ultracentrifugation. Plasma osmolality and erythrocyte aggregation index (EAI) were determined. Blood aliquots enriched with LDL-C and HDL-C showed significant higher EAI than untreated aliquots, whereas enrichment with VLDL-C does not induce significant EAI changes. For the same range of lipoprotein concentrations expressed as percentage of osmolality variation, the EAI variation was positive and higher in presence of HDL-C than upon enrichment with LDL-C (P < 0.01). Particle size, up to LDL diameter values, seems to reinforce erythrocyte tendency to aggregate at the same plasma osmolality (particle number) range of values.

Highlights

  • There is scientific agreement that a high serum level of lowdensity lipoproteins cholesterol (LDL-C) is a risk factor for atherosclerosis and cardiovascular diseases [1,2,3]

  • Using the cluster analysis and the beverage method, four classes of concentration range expressed as osmolality variation were grouped for each LDL-C; the VLDL-C and the HDL-C enriched blood aliquots, namely, Class I 0.005–0.025; Class II 0.030–0.035; Class III 0.045–0.055; Class IV 0.077–0.095 (Figure 1)

  • In the present in vitro study, we investigated the induction of human erythrocyte tendency to aggregation by autologous lipoproteins sub-fractions

Read more

Summary

Introduction

There is scientific agreement that a high serum level of lowdensity lipoproteins cholesterol (LDL-C) is a risk factor for atherosclerosis and cardiovascular diseases [1,2,3]. Several clinical studies evidenced associations between complex lipid macromolecules; for example, high LDL-C concentrations and blood rheological behaviour, like blood hyperviscosity, that are both referred to as cardiovascular risk factors [8,9,10]. Blood viscosity is dependent on macro(hematocrit and plasma viscosity) and micro-(erythrocyte deformability and aggregation) hemorheological parameters. Disturbances in blood rheological behaviour, such as high values of the blood and plasma viscosity and increased erythrocyte aggregation tendency, have been described in patients with ischemic heart diseases [11]. Red blood cells (RBCs) participate in acute coronary occlusion, mainly under conditions of lower shear rate, for example, within the microcirculation in the peri-infarct domain of myocardium [12]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call