Abstract
Integral abutment bridges accommodate thermal superstructure movements through flexible foundations rather than expansion joints. While these structures are a common alternative to conventional design, the literature on measured field stresses in piles supporting integral abutments appears to be quite limited. Therefore, field data from strain gauges installed on the abutment foundation piles of a 76 m long; two-span integral abutment bridge are the focus of this paper. Axial load, weak- and strong-axis bending moments of the foundation piles, as well as abutment movement and backfill response, are presented and discussed. Results indicate that the abutment foundation piles are bending in double curvature about the weak axis, as a result of thermal bridge movements, and bending also about the strong axis due to tilting of the abutments. A simple subgrade modulus approach is used to show its applicability in predicting behaviour under lateral loading. In the past, much emphasis has been placed on the lateral displacements of piles and less on variations of axial load. In this paper, a new hypothesis, which offers insight into the mechanisms behind the observed thermal variations in axial load, is proposed and assessed. The data from the field monitoring are also compared with the limited data reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.