Abstract

This paper describes a series of laboratory model tests performed on strip footings supported on 3D and planar geotextile-reinforced sand beds under a combination of static and repeated loads. Footing settlement due to initial static applied load and up to 20,000 subsequent load repetitions was recorded, until its value becomes stable or failure occurred due to excessive settlement. The response under the first few cycles was found to be a significant behavioral characteristic of footings under repeated loads. The influence of various amplitudes of repeated load on foundations containing different numbers of planar geotextile layers and different heights of the 3D geotextile reinforcement were investigated. Most of the observed responses show plastic shakedown developing – that is a stable, resilient response is observed once incremental plastic strains under each load repetition have ceased to accumulate. The results show that the maximum footing settlement due to repeated loading is comparable for either planar- or 3D-reinforced sand and much improved over the settlement of unreinforced sand. The efficiency of reinforcement in reducing the maximum footing settlement was decreased by increasing the mass of reinforcement in the sand. On the whole, the results indicate that, for the same mass of geotextile material used in the tests, the 3D geotextile reinforcement system behaves more effectively than planar reinforcement as a retardant for the effects of dynamic loading. Thus, a specific improvement in footing settlement can be achieved using a lesser quantity of 3D geotextile material compared to planar geotextile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.