Abstract
One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km { 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TECD) during activity of a solar X-ray ?are (it rises by a factor of 136 in the considered case) when TECD contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.