Abstract

Bentazon is a widely used herbicide in rice agroecosystems that has commonly been found in water resources. To assess how tillage and water regimes affect sorption/desorption, dissipation and leaching of bentazon in Mediterranean rice-growing conditions, field experiments were carried out using tillage and flooding (TF), tillage and sprinkler irrigation (TS), no-tillage and sprinkler irrigation (NTS) and long-term no-tillage and sprinkler irrigation (NTS7). After 3 years, the Kd values in TS were 2.3, 1.6 and 1.7 times lower than the values in NTS7, NTS and TF respectively. Greater sorption of bentazon was related to higher contents in total organic carbon and, although to a lesser extent, in humic acids and dissolved organic carbon. The persistence of bentazon was significantly greater under anaerobic (half-life DT50 = 94.1-135 days) than under aerobic (DT50 = 42.4-91.3 days) incubation conditions for all management regimes. Leaching losses of bentazon were reduced from 78 and 74% in TS and TF to 61 and 62% in NTS7 and NTS respectively. The mid- and long-term implementation of sprinkler irrigation in combination with no-tillage could be considered a management system that is effective at reducing water contamination by bentazon in Mediterranean rice-growing agroecosystems. © 2017 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call