Abstract

The interaction of a shock train with a normal suction slot is presented. It was found that when the pressure in the suction slot is smaller or equal to the static pressure of the incoming supersonic flow, the pressure gradient across the primary shock is sufficient to push some part of the near wall boundary layer through the suction slot. Due to the suction stabilized primary shock foot, the back pressure of the shock train can be increased until the shock train gradually changes into a single normal shock. During the experiments, the total pressure and therewith the Reynolds number of the flow were varied. The structure and pressure recovery within the shock train is analysed by means of Schlieren images and wall pressure measurements. Because the boundary layer is most important for the formation of a shock train, it has been measured by a Pitot probe. Additionally, computational fluid dynamics is used to investigate the shock boundary-layer interaction. Based on the experimental and numerical results, a simplified flow model is derived which explains the phenomenology of the transition of a shock train into a single shock and derives distinct criteria to maintain a suction enhanced normal shock. This flow model also yields the required suction mass flow in order to obtain a single normal shock in a viscous nozzle flow. Furthermore, it allows computation of the total pressure losses across a normal shock under the influence of boundary-layer suction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call