Abstract
Mating displays often contain multiple signals. Different combinations of these signals may be equally successful at attracting a mate, as environment and signal combination may influence relative signal weighting by choosy individuals. This variation in signal weighting among choosy individuals may facilitate the maintenance of polymorphic displays and signalling behaviour. One group of animals known for their polymorphic patterning are Batesian mimetic butterflies, where the interaction of sexual selection and predation pressures are hypothesized to influence the maintenance of polymorphic wing patterning and behaviour. Males in the female-limited polymorphic Batesian mimetic butterfly Papilio polytes use female wing pattern and female activity levels when determining whom to court. They court stationary females with mimetic wing patterns more often than stationary females with non-mimetic, male-like wing patterns, and active females more often than inactive females. It is unclear whether females modify their behaviour to increase (or decrease) their likelihood of receiving male courtship, or whether non-mimetic females spend more time in cryptic environments than mimetic females, to compensate for their lack of mimicry-driven predation protection (at the cost of decreased visibility to males). In addition, relative signal weighting of female wing pattern and activity to male mate selection is unknown. To address these questions, we conducted a series of observational studies of a polymorphic P. polytes population in a large butterfly enclosure. We found that males exclusively courted active females, irrespective of female wing pattern. However, males did court active non-mimetic females significantly more often than expected given their relative abundance in the population. Females exhibited similar activity levels, and selected similar resting environments, irrespective of wing pattern. Our results suggest that male preference for non-mimetic females may play an active role in the maintenance of the non-mimetic female form in natural populations, where males are likely to be in the presence of active, as well as inactive, mimetic and non-mimetic females.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.