Abstract
A scrutiny of the literature reveals that the free vibration characteristics of stiffened composite hypar shell with cutout are missing. So a generalized finite element formulation for the stiffened hyperbolic paraboloidal shells bounded by straight edges (commonly called as hypar shells) is attempted using an eight-noded curved quadratic isoparametric element for shell with a three-noded beam element for stiffener. Numerical problems of earlier investigators are solved as benchmark problems to validate the approach. A number of problems are further solved by varying the size of the cutouts and their positions with respect to the shell centre for different edge constraints. The results are presented in the form of figures and tables. The results are further analysed to suggest guidelines to select optimum size and position of the cutout with respect to shell centre considering the different practical constraints.
Highlights
The advent of laminated composites in civil engineering applications has provided a new impetus to the researchers to explore the different aspects of composite structural elements including different forms of shells
The selection of the 0/90/0/90 and +45/−45/+45/−45 lamination is based on an earlier study by Sahoo and Chakravorty [13] which revealed that repeating 0/90 unit and +45/−45 unit more than once and keeping the total shell thickness constant does not improve the fundamental frequency to an appreciable extent
The positions of the cutouts are varied along both of the plan directions of the shell for different practical boundary conditions to study the effect of eccentricity of cutout on the fundamental frequency
Summary
The advent of laminated composites in civil engineering applications has provided a new impetus to the researchers to explore the different aspects of composite structural elements including different forms of shells. A skewed hypar shell is aesthetically appealing and being doubly ruled is easy to cast. This configuration can allow entry of north light and due to this advantage it finds use as roofing units in practical civil engineering situations. Shell structures that are normally thin-walled exhibit improved performances with stiffeners, when the shell surface is provided with cutouts. Basic knowledge of the free vibration characteristics of stiffened composite skewed hypar shell with cutout is essential for using these forms confidently
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.