Abstract

Oil-based drill cuttings (OBDCs), which contain various petroleum hydrocarbons, heavy metals, and alkaline salts, will significantly affect the local ecosystem if left untreated. Supercritical water oxidation (SCWO) is regarded as a potential end-of-pipe technology that is able to degrade organic compounds, stabilize heavy metals, and neutralize alkaline salts simultaneously. In this paper, SCWO of OBDCs was carried out using a batch reactor. Six organic compounds and eight elements were selected as representatives of the petroleum hydrocarbons and heavy metals, respectively, in OBDCs. The effects of the oxygen coefficient (OC), temperature (T), and reaction time (t) on the degradation of petroleum hydrocarbons and the stabilization of heavy metals were evaluated in detail. The results indicated that nearly 100% of naphthalenes and more than 97% of alkanes could be destroyed when T > 475 °C, t > 2 min, and OC > 2.5. The elements Ba, Cr, and Pb were almost completely stabilized in the solid products, and small amounts of Zn and Cu were detected in the liquid products. More than the original contents of Fe, Cr, and Ni were found in the solid products due to the corrosion of the SCWO reactor. The content of alkaline salt in the feed was too low to affect the pH of the liquid products. The results of X-ray diffractometer (XRD) and scanning electron microscope (SEM) analyses suggested that SCWO can efficiently remove organic pollutants from OBDCs but does not obviously affect the microstructure and composition of the inorganic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call