Abstract

This paper examines the pin load ratios and the stress intensity factors (SIFs) of a single crack in the multiple bolted joints by using finite element analyses. Cubic-spline contact elements and rigid links were used to model the contact surface between the bolt and the rigid pin. The least-squares method was used to determine the SIFs. The finite element results indicate that the cracked hole can still sustain the major part of the original loading at the uncracked condition. The first hole sustains the largest pin load and mode-I SIF, which are reduced little for crack propagation. This critical condition cannot be reduced by the arrangement of more pins in the plate. In this paper, two simple formulae were also investigated to fit the load ratios and SIFs of the multiple bolted-joints problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.