Abstract

Virtually all neuropsychiatric disorders display sex differences in prevalence, age of onset, and/or clinical symptomology. Although altered dopamine (DA) signaling is a feature of many of these disorders, sex-dependent mechanisms uniquely responsive to DA that drive sex-dependent behaviors remain unelucidated. Previously, we established that anomalous DA efflux (ADE) is a prominent feature of the DA transporter (DAT) variant Val559, a coding substitution identified in two male-biased disorders: attention-deficit/hyperactivity disorder and autism spectrum disorder. In vivo, Val559 ADE induces activation of nigrostriatal D2-type DA autoreceptors (D2ARs) that magnifies inappropriate, nonvesicular DA release by elevating phosphorylation and surface trafficking of ADE-prone DAT proteins. Here we demonstrate that DAT Val559 mice exhibit sex-dependent alterations in psychostimulant responses, social behavior, and cognitive performance. In a search for underlying mechanisms, we discovered that the ability of ADE to elicit D2AR regulation of DAT is both sex and circuit-dependent, with dorsal striatum D2AR/DAT coupling evident only in males, whereas D2AR/DAT coupling in the ventral striatum is exclusive to females. Moreover, systemic administration of the D2R antagonist sulpiride, which precludes ADE-driven DAT trafficking, can normalize DAT Val559 behavioral changes unique to each sex and without effects on the opposite sex or wildtype mice. Our studies support the sex- and circuit dependent capacity of D2ARs to regulate DAT as a critical determinant of the sex-biased effects of perturbed DA signaling in neurobehavioral disorders. Moreover, our work provides a cogent example of how a shared biological insult drives alternative physiological and behavioral trajectories as opposed to resilience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call