Abstract

Activation of the D(1) and D(2) classes of dopamine receptor in the striatum synergistically promotes motor stereotypy. The mechanism of D(1)/D(2) receptor interaction remains unclear. To investigate the involvement of electrical synaptic transmission in this phenomenon, genetic inactivation of the neuronal gap junction (GJ) protein connexin 36 and pharmacological blockade of GJs were utilized. Stereotyped motor behavior was quantified after selective activation of D(1) receptors, D(2) receptors, or both receptors. These patterns of activation were produced by injection of the agonist apomorphine (3.0 mg/kg) 30 min after either the D(2) antagonist eticlopride (0.3 mg/kg), the D(1) antagonist SCH 23390 (0.1 mg/kg) or vehicle, respectively. Mixed background C57/BL6-129SvEv mice homozygous or heterozygous for the connexin 36 "knockout" allele displayed potent synergistic interaction between D(1) and D(2) receptor activation, and did not differ significantly from wild-type mice on any measure. All genotypes demonstrated long-lasting stereotypic sniffing, chewing, and/or licking after simultaneous activation of D(1) and D(2) receptors, effects that were absent following selective D(1) or D(2) activation. Swiss-Webster mice treated with the GJ blockers carbenoxolone (35 mg/kg), octanol (350 mg/kg) or mefloquine (50 mg/kg) also demonstrated the normal synergistic interaction between D(1) and D(2) receptors, although these drugs did block the grooming stimulated by selective D(1) receptor activation, independently of D(2) receptors. While D(1) receptor-stimulated grooming depends on GJs composed of connexins or possibly pannexins, the synergistic interaction of D(1) and D(2) receptors in control of stereotypy does not involve GJs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.