Abstract
During the spread of an epidemic, individuals in realistic networks may exhibit collective behaviors. In order to characterize this kind of phenomenon and explore the correlation between collective behaviors and epidemic spread, in this paper, we construct several mathematical models (including without delay, with a coupling delay, and with double delays) of epidemic synchronization by applying the adaptive feedback motivated by real observations. By using Lyapunov function methods, we obtain the conditions for local and global stability of these epidemic synchronization models. Then, we illustrate that quenched mean-field theory is more accurate than heterogeneous mean-field theory in the prediction of epidemic synchronization. Finally, some numerical simulations are performed to complement our theoretical results, which also reveal some unexpected phenomena, for example, the coupling delay and epidemic delay influence the speed of epidemic synchronization. This work makes further exploration on the relationship between epidemic dynamics and synchronization dynamics, in the hope of being helpful to the study of other dynamical phenomena in the process of epidemic spread.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.