Abstract
Tetrahydrocannabinol (THC) is the principle psychoactive ingredient of marijuana and produces various psychoactive effects through the brain cannabinoid (CB1) receptor. The CB1 receptor belongs to the seven-transmembrane domain family of G-protein-coupled receptors and is involved in the arachidonic acid cascade in the brain. Few reports have attempted to clarify the functional role of endogenous cannabinoid and the arachidonic acid cascade through the CB1 receptor using a behavioral paradigm. Therefore, in this study, we clarified the mechanism of cannabinoid-induced suppression of lever pressing in rats, focusing on the arachidonic acid cascade as a novel second messenger of CB1 receptor. Δ 8-THC and the potent synthetic CB1 receptor agonist HU-210 dose-dependently inhibited lever-pressing performance. The Δ 8-THC-induced suppression was significantly antagonized by the cyclooxygenase (COX) inhibitors diclofenac (32 mg/kg, i.p.), aspirin (10 mg/kg, i.p.) and indomethacin (10 mg/kg, i.p.). The suppressive effect of HU-210 was also significantly antagonized by 32 mg/kg diclofenac. Prostaglandin E 2 (3.2 μg/rat, i.c.v.), the final product of the arachidonic acid cascade, significantly inhibited lever pressing similar to Δ 8-THC and HU-210. In conclusion, we found that suppression of lever-pressing behavior induced by cannabinoids was mediated through activation of the arachidonic acid cascade via the CB1 receptor. Therefore, it is possible that the psychoactive effects of cannabinoid are due to an increase in the formation of PGE 2 in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.