Abstract

Rapidly increasing pyrethroid insecticide resistance and changes in vector biting and resting behavior pose serious challenges in malaria control. Mosquito repellents, especially spatial repellents, have received much attention from industry. We attempted to simulate interactions between mosquitoes and repellents using a machine learning method, the Self-Propelled Particle (SPP) model, which we modified to include attractiveness/repellency effects. We simulated a random walk scenario and scenarios with insecticide susceptible/resistant mosquitoes against repellent alone and against repellent plus attractant (to mimic a human host). Simulation results indicated that without attractant/repellent, mosquitoes would fly anywhere in the cage at random. With attractant, all mosquitoes were attracted to the source of the odor by the end. With repellent, all insecticide-susceptible mosquitoes eventually moved to the corner of the cage farthest from the repellent release point, whereas, a high proportion of highly resistant mosquitoes might reach the attractant release point (the human) earlier in the simulation. At fixed concentration, a high proportion of mosquitoes could be able to reach the host when the relative repellency efficacy (compare to attractant efficacy) was <1, whereas, no mosquitoes reached the host when the relative repellency efficacy was > 1. This result implies that repellent may not be sufficient against highly physiologically insecticide resistant mosquitoes, since very high concentrations of repellent are neither practically feasible nor cost-effective.

Highlights

  • Malaria remains to be the world’s most common mosquito-borne disease, with an estimated 228 million cases worldwide in 2018 [1]

  • Control efforts mainly rely on vector control using a single class of insecticides, the pyrethroids, which is the only class approved for use on LongLasting Insecticidal Nets (LLINs) [2]

  • A number of recent studies have documented changes in the biting behavior of the major African malaria vectors, Anopheles gambiae and Anopheles funestus, from midnight biting to biting in the early evening and morning hours, and to biting outdoors, where people are not protected by Indoor Residual Spraying (IRS) or LLINs [16,17,18]

Read more

Summary

Introduction

Malaria remains to be the world’s most common mosquito-borne disease, with an estimated 228 million cases worldwide in 2018 [1]. A number of recent studies have documented changes in the biting behavior of the major African malaria vectors, Anopheles gambiae and Anopheles funestus, from midnight biting to biting in the early evening and morning hours, and to biting outdoors, where people are not protected by Indoor Residual Spraying (IRS) or LLINs [16,17,18]. This early outdoor biting behavior is likely due to insecticide-induced behavioral changes in malaria vectors, i.e., avoiding contact with insecticide-treated bed nets and walls [19,20]. Residual malaria transmission has become a very important challenge in malaria control [21]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call