Abstract

Polyethylene glycol (PEG; 2000 MW, 30% by volume) has been shown to mechanically repair damaged cellular membranes and reduce secondary axotomy after traumatic brain and spinal cord injury (TBI and SCI respectively). This repair is achieved following spontaneous reassembly of cell membranes made possible by the action of targeted hydrophilic polymers which first seal the compromised portion of the plasmalemma, and secondarily, allow the lipidic core of the compromised membranes to resolve into each other. Here we compared PEG-treated to untreated rats using a computer-managed open-field behavioral test subsequent to a standardized brain injury. Animals were evaluated after a 2-, 4-, and 6-hour delay in treatment after TBI. Treated animals receive a single subcutaneous injection of PEG. When treated within 2 hours of the injury, injured PEG-treated rats showed statistically significant improvement in their exploratory behavior recorded in the activity box when compared to untreated but brain-injured controls. A delay of 4 hours reduced this level of achievement, but a statistically significant improvement due to PEG injection was still clearly evident in most outcome measures compared at the various evaluation times. A further delay of 2 more hours, however, eradicated the beneficial effects of PEG injection as revealed using this behavioral assessment. Thus, there appears to be a critical window of time in which PEG administration after TBI can provide neuroprotection resulting in an enhanced functional recovery. As is often seen in clinically applied acute treatments for trauma, the earlier the intervention can be applied, the better the outcome.

Highlights

  • Traumatic brain injury (TBI) is a pernicious event that destroys many lives

  • Polyethylene glycol (PEG) has been used subsequent to a standardized TBI in the rat to reduce cellular damage in brain in various regions, the white matter of the corpus callosum [4]

  • Immunohistochemical staining for β-Amyloid Precursor Protein, a protein that aggregates in the axon terminal associated with progressive secondary axotomy, has been significantly reduced by PEG treatment after injury [5]

Read more

Summary

Introduction

Traumatic brain injury (TBI) is a pernicious event that destroys many lives. There are no effective pharmacological treatments for TBI [1]. Treatments once thought promising such as the use of corticosteriods have been determined not to have any neuroprotective qualities [2,3]. PEG has been used subsequent to a standardized TBI in the rat to reduce cellular damage in brain in various regions, the white matter of the corpus callosum [4]. Immunohistochemical staining for β-Amyloid Precursor Protein, a protein that aggregates in the axon terminal associated with progressive secondary axotomy, has been significantly reduced by PEG treatment after injury [5]. The salutary effects of PEG have likewise (page number not for citation purposes)

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.