Abstract

Newly emerging synthetic cannabinoid compounds continue to be found in the designer drug market. They are often targeted as a 'legal high' alternative to traditional cannabinoids via 'darknet' markets and their increased potency and efficacy are becoming a growing concern internationally. The purpose of this study was to determine whether 4-CN-CUMYL-BUTINACA, 4F-MDMB-BINACA, 5F-AEB, 5F-CUMYL-P7AICA and EMB-FUBINACA exhibited similar behavioral effects as Δ9-tetrahydrocannabinol (Δ9-THC). Locomotor activity was assessed in an open-field assay using Swiss-Webster mice. Male Sprague-Dawley rats were trained to discriminate between intraperitoneal injections of Δ9-THC (3 mg/kg) and vehicle. Following successful training, substitution tests for 4-CN-CUMYL-BUTINACA, 4F-MDMB-BINACA, 5F-AEB, 5F-CUMYL-P7AICA and EMB-FUBINACA were conducted. All of the test compounds decreased locomotor activity. 4-CN-CUMYL-BUTINACA (ED50 = 0.26 mg/kg), 4F-MDMB-BINACA (ED50 = 0.019 mg/kg), 5F-CUMYL-P7AICA (ED50 = 0.13 mg/kg) and EMB-FUBINACA (ED50 = 0.13 mg/kg) each fully substituted for the discriminative stimulus effects of the training dose of Δ9-THC, whereas 5F-AEB produced only a maximum of 67% drug-appropriate responding at 0.5 mg/kg. Higher doses produced piloerection, exophthalmos and convulsions. 4-CN-CUMYL-BUTINACA, 4F-MDMB-BINACA, 5F-CUMYL-P7AICA and EMB-FUBINACA are likely to produce similar subjective effects in humans as those produced by abused synthetic cannabinoids, and may therefore share similar abuse liability. In contrast, 5F-AEB may have a reduced abuse liability given its weaker THC-like discriminative stimulus effects but maybe more dangerous due to the adverse effects observed at doses needed to produce discriminative stimulus effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call