Abstract

Resurgence is an increase in a previously extinguished operant response that occurs if an alternative reinforcement introduced during extinction is removed. Shahan and Sweeney (2011) developed a quantitative model of resurgence based on behavioral momentum theory that captures existing data well and predicts that resurgence should decrease as time in extinction and exposure to the alternative reinforcement increases. Two experiments tested this prediction. The data from Experiment 1 suggested that without a return to baseline, resurgence decreases with increased exposure to alternative reinforcement and to extinction of the target response. Experiment 2 tested the predictions of the model across two conditions, one with constant alternative reinforcement for five sessions, and the other with alternative reinforcement removed three times. In both conditions, the alternative reinforcement was removed for the final test session. Experiment 2 again demonstrated a decrease in relapse across repeated resurgence tests. Furthermore, comparably little resurgence was observed at the same time point in extinction in the final test, despite dissimilar previous exposures to alternative reinforcement removal. The quantitative model provided a good description of the observed data in both experiments. More broadly, these data suggest that increased exposure to extinction may be a successful strategy to reduce resurgence. The relationship between these data and existing tests of the effect of time in extinction on resurgence is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call