Abstract

Amphibian water balance has been studied at many levels of biological order. Terrestrial species must react to environmental cues that relate to water availability while some arboreal species have cutaneous skin secretions that can reduce evaporative water loss. The Indian tree frog, Polypedates maculatus, uses cutaneous secretions and wiping behavior to lower evaporation but also relies on moist microclimates to endure prolonged survival away from water. The related species, P. Leucomystax, inhabits wetter forest habitats. Preliminary studies with this species are unable to demonstrate the expression of wiping behavior, indicating that arid habitats may be a powerful selective force for this behavior. Laboratory experiments on rehydrating toads in the genus Bufo indicate that animals are able to detect changes in barometric pressure and humidity that might result in the availability of water under field situations. Experiments with Bufonid species and with spadefoot toads, Scaphiopus couchi, show that the peptide hormone, angiotensin II, stimulates cutaneous drinking in a similar manner seen for oral drinking by other vertebrate classes. Amphibian tissues have long been used as a model for the study of basic physiological principles of epithelial ion and water transport. Recent progress with tissue cultures has provided information on the molecular structure of ion and water channels that can be applied to obtain a better understanding, at the molecular level, of ion and water balance strategies used by the wide variety of amphibian species. Terrestrial amphibians are more tolerant of dehydration than are other vertebrates and are able to store dilute urine in their urinary bladder. Toads appear to be able to detect the presence of water in their bladders in addition to the availability of water in their environment. Dehydrated toads are able to rehydrate very rapidly by the coordination of behavioral and physiological mechanisms to enhance cutaneous water absorption. The integration of behavior with cutaneous water gain, renal handling of ions and water and the role of the lymphatic system in overall water balance involves complex interactions between neural and hormonal factors. Experiments are summarized that describe the contribution of individual factors however much more information is needed before the nature of these interactions are fully understood. J. Exp. Zool. 283:662–674, 1999. © 1999 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.