Abstract

Recently it has been shown that list decoding of Reed-Solomon codes may be translated into a bivariate interpolation problem. The data consist of pairs in a finite field and the aim is to find a bivariate polynomial that interpolates the given pairs and is minimal with respect to some criterion. We present a systems theoretic approach to this interpolation problem. With the data points we associate a set of time series, also called trajectories. For this set of trajectories we construct the Most Powerful Unfalsified Model (MPUM). This is the smallest possible model that explains these trajectories. The bivariate polynomial is then derived from a specific polynomial representation of the MPUM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.