Abstract

The pipe jacking method is gradually attracting increasing levels of attention and is becoming an important method for constructing underground engineering. However, jacking large-size concrete pipes in urban core areas subjected to complicated geological conditions is still a big problem preventing the employment of the pipe jacking method, and further studies related to pipe jacking are required. This paper presents a case study on the construction of three parallel large-size reinforced concrete circular pipes in the upper-soft and lower-hard composite formations, in which the construction work was implemented using the slurry balance pipe jacking method with the sequence of jacking the 1# and 3# pipes prior to the 2# pipe being implemented in field construction. This case study was implemented by employing numerical simulations with the aforementioned pipe jacking sequence, which focused on the stress and deformation variations of the reinforced concrete circular pipes, as well as the vertical settlement of the ground surface during the jacking processes, and considering the influences from the excavation pressure and grouting pressure of the drag-reducing thixotropic slurry. The simulation results revealed that a higher excavation pressure from the pipe jacking machine can easily induce an excessive pushing and squeezing effect of the excavated soil with the uplift phenomenon, while the increasing grouting pressure can be used to reduce the overall vertical settlement of the ground surface, whereas an excessive grouting pressure may have no effectiveness on protecting the reinforced concrete circular pipes. This work provides the numerical foundations for investigating the behavior of jacked parallel large-size reinforced concrete circular pipes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.