Abstract

We have been here before. In psychology and philosophy, character traits have been invoked time and again to argue that people should be disposed to behave consistently across a wide range of trait-relevant scenarios. Take moral behavior. In frameworks ranging from Aristotelian moral psychology, virtue ethics, and Kohlberg's (1984) developmental stage theory of moral reasoning to contemporary economic theories of fairness (e.g., Fehr and Schmidt, 1999), the same premise applies: The virtues, traits, and social preferences a person possesses and the developmental stages she has passed through supposedly imply consistency in how she will behave in morally relevant situations (see Doris, 2002). But it just isn't so. Seemingly inconsequential situational changes can give rise to consequential behavioral inconsistencies. In a classic study by Darley and Batson (1973), for instance, students at the Princeton Theological Seminary – whose current mission statement lists “compassion” among its training objectives – failed to show exactly this quality in the face of a minor contextual change. The experiment required students to walk from one building to another. On the way, and believing that they were running late, merely 10% of the students offered help to a (confederate) person slumped in a doorway. When time was of little concern, however, 63% of them did so. This inconsistency in compassionate behavior is striking given the seemingly minor situational change. Although examples of such inconsistencies abound (Fleischhut and Gigerenzer, in press), the notion of stable virtues remains “deeply compelling” to most of us – notwithstanding the fact that “much of this lore rests on psychological theory that is some 2,500 years old” (Doris, 2002, p. ix). The lore of stable and domain-general risk preferences arose in the twentieth century (for a canonical reference, see Samuelson, 1938), and it is at least as seductive as theories of robust and context-invariant moral traits and virtues. Without the assumption of stable preferences standard utility models in many fields of economics simply would not work. Yet evidence against this assumption has been mounting for decades (see Friedman and Sunder, 2011). Let us give just two recent examples. Contrary to expected utility theory, Tversky and Kahneman (1992) and Tversky and Fox (1995) showed that, depending on domain (loss versus gain) and probability (low versus high), people behave in both a risk-averse and a risk-seeking way. Specifically, they are risk-averse when the probability of winning is high but risk-seeking when it is low. In the loss domain, in contrast, people are risk-averse when the probability of losing is low but risk-seeking when it is high (Table ​(Table1).1). This “fourfold pattern” runs counter to the assumption of risk aversion as a domain-general trait. It has been shown to arise in decisions from description (Hertwig et al., 2004), where – as is common in choices between monetary gambles such as those used by Kahneman and Tversky (1979) – people are able to peruse descriptions of probability and outcome distributions. Outside the laboratory, however, outcomes and probabilities are rarely known with certainty and served up to the decision-maker on a platter. Consequently, people must often choose between options without having a convenient description of possible choice outcomes, let alone their probabilities. One strategy for overcoming such uncertainty is to sample the payoff distributions to learn about the options’ attractiveness and, based on the experienced information, to come to a decision. In such decisions from experience (Hertwig and Erev, 2009) the fourfold pattern is reversed (Table ​(Table1;1; see also Hertwig, 2011). In other words, inferred risk preferences vary as a function of the mode of decision making (description versus experience) as well as domain (gain versus loss) and probability (low versus high). Table 1 Fourfold pattern in decisions from description and reversed pattern in decisions from experience (Hertwig, 2011). Instability in risk preferences has also been found in real-world data. Starting with the assumption that people are expected utility maximizers, Barseghyan et al. (2011) examined whether the choice of insurance cover in a sample of U.S. households can be modeled by the same coefficient of absolute risk aversion. It could not. Households’ inferred risk preferences proved to be unstable across highly related decision contexts, differing not only between auto insurance and home insurance but also between two different types of auto insurance (collision versus comprehensive).

Highlights

  • Behavioral inconsistencies do not imply inconsistent strategiesContrary to expected utility theory, Tversky and Kahneman (1992) and Tversky and Fox (1995) showed that, depending on domain (loss versus gain) and probability (low versus high), people behave in both a riskaverse and a risk-seeking way

  • Inconsequential situational changes can give rise to consequential behavioral inconsistencies

  • Starting with the assumption that people are expected utility maximizers, Barseghyan et al (2011) examined whether the choice of insurance cover in a sample of U.S households can be modeled by the same coefficient of absolute risk aversion

Read more

Summary

Behavioral inconsistencies do not imply inconsistent strategies

Contrary to expected utility theory, Tversky and Kahneman (1992) and Tversky and Fox (1995) showed that, depending on domain (loss versus gain) and probability (low versus high), people behave in both a riskaverse and a risk-seeking way. To take one prominent example, cumulative prospect theory (Tversky and Kahneman, 1992) has five adjustable parameters, which allow both for separate value functions for losses and gains and for a probabilityweighting function to accommodate the fourfold pattern In this approach, any further inconsistencies in risk preferences (e.g., Barseghyan et al, 2011) would require additional adjustable parameters – for instance, a parameter that accommodates risk aversion as a function of different insurance domains. Parameterized repair models, which already assume complex computations, become even more opaque as-if models that cannot describe the underlying decision process

Probability Low
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.