Abstract

Innovative problem solving, repeated innovation, learning, and inhibitory control are cognitive abilities commonly regarded as important components of behaviorally flexible species. Animals exhibiting these cognitive abilities may be more likely to adapt to the unique demands of living in novel and rapidly changing environments, such as urbanized landscapes. Raccoons(Procyon lotor) are an abundant, generalist species frequently found in urban habitats, and are capable of innovative problem solving, which makes them an ideal species to assess their behavioral flexibility. We gave 20 captive raccoons a multi-access puzzle box to investigate which behavioral and cognitive mechanisms enable the generation of innovative and flexible behaviors in this species. Over two-thirds of raccoons tested were not only capable of innovative problem solving, but displayed repeated innovation by solving more than one solution on the multi-access puzzle box and demonstrated that they learned multiple solutions to a novel problem. Although we found no relationship between our measure of inhibitory control and a raccoon's ability to exhibit repeated innovations, we did find a positive relationship between the diversity of behaviors that an individual exhibited when interacting with the problem and the number of solution types that they solved. We identified other predictors of problem-solving performance, including neophobia and persistence. Finally, we examine the implications of our results in the context of the cognitive-buffer hypothesis and consider whether the widespread success of an adaptive generalist carnivore could be due in part to having these cognitive and behavioral traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call