Abstract

Activation of the endocannabinoid system modulate dopaminergic pathways that are involved in the effects of psychostimulants including amphetamine, cocaine, nicotine and other drugs of abuse. Genetic deletion or pharmacological activation of CB2 cannabinoid receptor is involved in the modulation of the effects of psychostimulants and their rewarding properties. Here we report on the behavioral effects of psychostimulants in DAT-Cnr2 conditional knockout (cKO) mice with selective deletion of type 2 cannabinoid receptors in dopamine neurons. There was enhanced psychostimulant induced hyperactivity in DAT-Cnr2 cKO mice, but the psychostimulant-induced sensitization was absent in DAT-Cnr2 cKO compared to the WT mice. Intriguingly, lower doses of amphetamine reduced locomotor activity of the DAT-Cnr2 cKO mice. While cocaine, amphetamine and methamphetamine produced robust conditioned place preference (CPP) in both DAT-Cnr2 cKO and WT mice, nicotine at the dose used induced CPP only in the WT but not in the DAT-Cn2 cKO mice. However, pre-treatment with the CB2R selective agonist JWH133, blocked cocaine and nicotine induced CPP in the WT mice. The deletion of CB2Rs in dopamine neurons modified the levels of tyrosine hydroxylase, and reduced the expression of dopamine transporter gene expression in DAT-Cnr2 cKO midbrain region. Taken together, our data suggest that CB2Rs play a role in the modulation of dopamine-related effects of psychostimulants and could be exploited as therapeutic target in psychostimulant addiction and other psychiatric disorders associated with dopamine dysregulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.