Abstract

Salmonid fish show considerable geographical variation in morphology, physiology, and behavior. Understanding the genetic mechanisms underlying this variation could be useful for enhancing aquaculture stocks, identifying unique populations for conservation, and determining the genetic factors underlying natural adaptation and domestication. As a first step toward the genetic dissection of salmonid behavioral diversity, we examined variation in behavior patterns among four clonal lines of rainbow trout ( Oncorhynchus mykiss ) derived from geographically diverse source populations with different domestication histories. Clonal lines were crossed with two outbred (i.e., not homozygous) females, and the resulting progenies were reared and tested under identical conditions. Clonal line had significant genetic effects on mean swim level, hiding, foraging, startle response, and aggression level. Multiple comparisons suggest that domestication history of the source populations had a strong influence on these behavior patterns. Progeny of two clonal lines derived from populations reared in captivity for over 100 years exhibited reductions in predator avoidance behavior patterns and increases in aggression compared to progeny of two clonal lines from more recently domesticated populations. These results will facilitate future investigation of the genetic factors underlying population variation in these behavior patterns influenced by domestication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call