Abstract

This study examines how exploiting biases in probability judgment can enhance deterrence using a fixed allocation of defensive resources. We investigate attacker anchoring heuristics for conjunctive events with missing information to distort attacker estimates of success for targets with equal defensive resources. We designed and conducted a behavioral experiment functioning as an analog cyber attack with multiple targets requiring three stages of attack to successfully acquire a target. Each stage is associated with a probability of successfully attacking a layer of defense, reflecting the allocation of resources for each layer. There are four types of targets that have nearly equal likelihood of being successfully attacked, including one type with equally distributed success probabilities over every layer and three types with success probabilities that are concentrated to be lowest in the first, second, or third layer. Players are incentivized by a payoff system that offers a reward for successfully attacked targets and a penalty for failed attacks. We collected data from a total of 1,600 separate target selections from 80 players and discovered that the target type with the lowest probability of success on the first layer was least preferred among attackers, providing the greatest deterrent. Targets with equally distributed success probabilities across layers were the next least preferred among attackers, indicating greater deterrence for uniform-layered defenses compared to defenses that are concentrated at the inner (second or third) levels. This finding is consistent with both attacker anchoring and ambiguity biases and an interpretation of failed attacks as near misses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.