Abstract

Polybrominated diphenyl ethers (PBDEs) are a class of widely used flame retardants, and their residue in the environment may threaten the ecosystem and human health. The neurodevelopmental toxic effects of PBDEs have been verified in previous studies, but the mechanisms are still unclear. Behavioral analysis and transcriptomics were performed in this study to assess the neurodevelopmental toxic effects of PBDEs on zebrafish embryos and larvae, and the potential mechanisms. The embryos were collected after fertilization and exposed to control (0.05% DMSO), 10, 50, 100 (ug/L) 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) for 7 days. The locomotion parameters of larvae were recorded and analyzed by a behavioral analysis system (EthoVision XT, Noldus). Enrichment of functions and signaling pathways of differentially expressed genes (DEGs) were analyzed by GO and DAVID database. The comparison with the control group showed adverse developments such as low hatching rate, high mortality rate, alterative heart rate, and abnormal spontaneous tail coiling frequency of embryos (24hpf). For the zebrafish larvae, behavioral analyses results suggested decreased activities and movements of the treatment in the light-dark period at 120, 144 and 168hpf, especially the 50 and 100μg/L groups. The affected functions included steroid hormone regulation, neuro regulation, circadian regulation, cardioblast differentiation, immune-related regulation. The enrichment of KEGG pathways were Hedgehog signaling (Shh), Toll-like receptor signaling, FoxO signaling, and Steroid biosynthesis pathway. Hedgehog signaling pathway was further verified via RT-qPCR for its major role in the development of neurogenesis. The mRNA levels of Shh pathway indicated the inhibition of Shh signal in our study since shha, patched1, gli1 and gli2 genes were significantly down-regulated. In summary, PBDEs might influence the neurodevelopment of zebrafish in the early life stage by multiple toxic signaling pathways alteration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call