Abstract

<p><span>The usage of mobile phones has increased multifold in the recent decades mostly because of its utility in most of the aspects of daily life, such as communications, entertainment, and financial transactions. Feature phones are generally the keyboard based or lower version of touch based mobile phones, mostly targeted for efficient calling and messaging. In comparison to smart phones, feature phones have no provision of a biometrics system for the user access. The literature, have shown very less attempts in designing a biometrics system which could be most suitable to the low-cost feature phones. A biometric system utilizes the features and attributes based on the physiological or behavioral properties of the individual. In this research, we explore the usefulness of keystroke dynamics for feature phones which offers an efficient and versatile biometric framework. In our research, we have suggested an approach to incorporate the user’s typing patterns to enhance the security in the feature phone. We have applied k-nearest neighbors (k-NN) with fuzzy logic and achieved the equal error rate (EER) 1.88% to get the better accuracy. The experiments are performed with 25 users on Samsung On7 Pro C3590. On comparison, our proposed technique is competitive with almost all the other techniques available in the literature.</span></p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.