Abstract
The neurotoxin MPTP has long been used to create a mouse model of Parkinson's disease (PD). Indeed, several MPTP analogues have been developed, including 2'-CH3-MPTP, which was shown to induce nigrostriatal DA neuronal depletion more potently than MPTP. However, no study on behavioral and molecular alterations in response to 2'-CH3-MPTP has been carried out so far. In the present work, 2'-CH3-MPTP was administered to mice (2.5, 5.0 and 10mg/kg per injection, once a day, 5days) and histological, biochemical, molecular and behavioral alterations were evaluated. We show that, despite a dose-dependent-like pattern observed for nigrostriatal dopaminergic neuronal death and dopamine depletion, dose-specific alterations in dopamine metabolism and in the expression of dopaminergic neurotransmission-associated genes could be related to specific motor deficits elicited by the different doses tested. Interestingly, 2'-CH3-MPTP leads to increased DAT and MAO-B transcription, which could explain, respectively, its higher potency and the requirement of higher doses of MAO inhibitors to prevent nigrostriatal neuronal death when compared to MPTP. Also, perturbations in dopamine metabolism as well as possible alterations in dopamine bioavailability in the synaptic cleft were also identified and correlated with strength and ambulation deficits in response to specific doses. Overall, the present work brings new evidence supporting the distinct effects of 2'-CH3-MPTP when compared to its analogue MPTP. Moreover, our data highlight the utmost importance of a precise experimental design, as different administration regimens and doses yield different biochemical, molecular and behavioral alterations, which can be explored to study specific aspects of PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.