Abstract

Varroa jacobsoni, an ectoparasite of the Asian honeybee Apis cerana, has been introduced world-wide, and is currently decimating colonies of the European honeybee Apis mellifera. Varroa's reproductive cycle is tuned to that of drone cells, those mainly parasitized in the original host. We describe here how a single fertilized female, infesting a brood cell, can produce two to four adult fertilized females within the limited time span of bee development (270 h in worker and 320 h in drone cells), despite the disturbance caused by cocoon spinning and subsequent morphological changes of the bee. From observations on transparent artificial cells we were able to show how the mite combats these problems with specialized behaviors that avoid destruction by the developing bee, prepares a feeding site for the nymphs on the bee pupa, and constructs a fecal accumulation on the cell wall which serves as a rendezvous site for matings between its offspring. The proximity of the fecal accumulation to the feeding site facilitates feeding by the maturing progeny. However, communal use of the feeding site leads to competition between individuals, and protonymphs are most disadvantaged. This competition is somewhat compensated by the timing of oviposition by the mites. Use of a common rendezvous and feeding site by two or more Varroa mothers in multiinfested cells may have developed from the parental care afforded to them as nymphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.