Abstract

Humans can innately track a moving target by anticipating its future position from a brief history of observations. While ballistic trajectories can be readily extrapolated, many natural and artificial systems are governed by more general nonlinear dynamics and, therefore, can produce highly irregular motion. Yet, relatively little is known regarding the behavioral and physiological underpinnings of prediction and tracking in the presence of chaos. Here, we investigated in lab settings whether participants could manually follow the orbit of a paradigmatic chaotic system, the Rössler equations, on the (x,y) plane under different settings of a control parameter, which determined the prominence of transients in the target position. Tracking accuracy was negatively related to the level of unpredictability and folding. Nevertheless, while participants initially reacted to the transients, they gradually learned to anticipate it. This was accompanied by a decrease in muscular co-contraction, alongside enhanced activity in the theta and beta EEG bands for the highest levels of chaoticity. Furthermore, greater phase synchronization of breathing was observed. Taken together, these findings point to the possible ability of the nervous system to implicitly learn topological regularities even in the context of highly irregular motion, reflecting in multiple observables at the physiological level.

Highlights

  • A remarkable property of nonlinear dynamical systems is their ability to generate highly complex trajectories in spite of structural simplicity

  • The profound influence of chaos theory on contemporary science can be gauged by the fact that universal features of nonlinear dynamics are cohesively observed across systems as diverse as meteorological

  • Based on the canonical responses to stress, one could expect faster respiration and heart rate under higher chaoticity, but no significant differences in cardiovascular activation were observed

Read more

Summary

Introduction

A remarkable property of nonlinear dynamical systems is their ability to generate highly complex trajectories in spite of structural simplicity. From the canonical three-body problem through toy models such as the double pendulum and the dripping water faucet, chaotic motions permeate nature even in the most unsuspecting circumstances. The profound influence of chaos theory on contemporary science can be gauged by the fact that universal features of nonlinear dynamics are cohesively observed across systems as diverse as meteorological. Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call