Abstract

This review summarizes behavioral and neurophysiological aspects of inhibitory control affected by a single bout of cardiovascular exercise. The review also examines the effect of a single bout of cardiovascular exercise on these processes in young adults with a focus on the functioning of prefrontal pathways (including the left dorsolateral prefrontal cortex (DLPFC) and elements of the prefrontal-basal ganglia pathways). Finally, the review offers an overview on the potential effects of cardiovascular exercise on GABA-ergic and glutamatergic neurotransmission in the adult brain and propose mechanisms or processes that may mediate these effects. The main findings show that a single bout of cardiovascular exercise can enhance inhibitory control. In addition, acute exercise appears to facilitate activation of prefrontal brain regions that regulate excitatory and inhibitory pathways (specifically but not exclusively the prefrontal-basal-ganglia pathways) which appear to be impaired in older age. Based on the reviewed studies, we suggest that future work examine the beneficial effects of exercise on the inhibitory networks in the aging brain.

Highlights

  • Inhibition plays an important role in the control of many cognitive and motor functions [1,2]

  • Our discussion focuses on the effects of acute exercise on mechanisms involved in interactions between motor pathways and prefrontal-basal-ganglia pathways

  • Based on the aforementioned observations, we suggest that a single bout of cardiovascular exercise may act to improve both movement initiation and efficiency of prefrontal-basal ganglia inhibitory control by increasing the cortical concentrations of glutamate [99,100]

Read more

Summary

Introduction

Inhibition plays an important role in the control of many cognitive and motor functions [1,2]. GABA-ergic activity in the primary motor cortex (M1) has been reported to play a prominent role in the fine tuning of corticospinal excitability during movement initiation and movement withdrawal [2] or during movement preparation [5,10]. From a system functionality point of view, inhibition is mediated primarily by a widespread prefrontal network including the right inferior frontal gyrus (rIFG), the pre-supplementary motor area (preSMA), the left-dorsolateral prefrontal cortex (DLPFC), and the basal ganglia [14,15,16,17] (for reviews, see [18,19,20])

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call