Abstract

Adult male rats received transplants of dissociated 30-day old cultured cortical astrocytes into the ipsilateral frontal and parietal cortex immediately after unilateral ibotenic acid lesion of the NBM or after sham injury. We hypothesized that transplants of astrocytes into the acetylcholine-deprived cortex might provide trophic support to terminals arising from damaged NBM neurons. Twenty four hours after transplantation and every other day for 11 days post surgery, the animals were tested for locomotion and habituation in an open field. NBM lesion reduced vertical movements on ly as compared to no lesion and no transplant counterparts. Nine days after surgery rats with NBM lesion and astrocyte-transplants into the cortex were as impaired in the acquisition of a passive avoidance (PA) task as untreated counterparts. Animals with no lesions and transplants into the cortex also had significant PA acquisition deficits. All rats with ibotenic lesion were significantly impaired on PA retention as compared to rats with no lesions. Astrocyte-transplants survived up to 2 months after cortical implantation but these transplants produced severe laminar disruption and gliosis. This effect was greater in rats with NBM lesion than in intact animals with transplants into the cortex. These data show that astrocyte-transplants do not promote functional recovery after NBM lesion and suggest an immune rejection of the astrocyte transplants by the host brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.