Abstract

Ultrasound brain stimulation is a promising modality for probing brain function and treating brain diseases. However, its mechanism is as yet unclear, and in vivo effects are not well-understood. Here, we present a top-down strategy for assessing ultrasound bioeffects in vivo, using Caenorhabditis elegans. Behavioral and functional changes of single worms and of large populations upon ultrasound stimulation were studied. Worms were observed to significantly increase their average speed upon ultrasound stimulation, adapting to it upon continued treatment. Worms also generated more reversal turns when ultrasound was ON, and within a minute post-stimulation, they performed significantly more reversal and omega turns than prior to ultrasound. In addition, in vivo calcium imaging showed that the neural activity in the worms' heads and tails was increased significantly by ultrasound stimulation. In all, we conclude that ultrasound can directly activate the neurons of worms in vivo, in both of their major neuronal ganglia, and modify their behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.