Abstract

The Lurcher mutant mouse can be considered an adequate model of autosomal dominant spinocerebellar atrophy because of the severe degeneration of its cerebellar cortex and inferior olive. The purpose of this study was to determine whether the motor coordination deficits of Lurcher mutants could be improved after chronic administration of the serotonin (5-hydroxytryptamine; 5-HT) precursor, l-tryptophan, or of the 5-HT 1A agonist, buspirone. During these treatments, the mice were submitted to behavioral evaluations using the coat hanger and the rotorod tests, as well as an inclined screen and a vertical grid test. At the end of treatments, 5-HT and 5-hydroxindole-3-acetic acid (5-HIAA) were measured in six brain regions. On the coat hanger test, administration of l-tryptophan accelerated movements along the horizontal bar by 44%, while buspirone increased the time spent on the apparatus by 11%. Neither drug had an effect on climbing ability or on the time spent on a rotating beam. Administration of l-tryptophan increased 5-HIAA levels in frontal cortex, neostriatum, thalamus, brainstem, cerebellum and spinal cord, but elevated 5-HT only in neostriatum, brainstem and cerebellum. In contrast, buspirone led to 5-HT increases in cerebellum and augmented 5-HIAA in the spinal cord. The modest test-specific improvements are consistent with some of the clinical data concerning 5-HT pharmacotherapy in patients suffering from cerebellar atrophy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call